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Instituto de Estructura de la Materia, CSIC, Serrano 119, 28006 Madrid, Spain
E-mail: iemd300@csic.es

D. S. SANDITOV
Buryat State University, Smolina 24a, 670000 Ulan-Ude, Russia
E-mail: sanditov@bsu.ru

V. P. PRIVALKO
Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine,
Kharkiv Chaussee 48, 02160 Kyiv, Ukraine
E-mail: privalko@iptelecom.net.ua

Hardness is defined as a phenomenological measure of resistance of a material to shear
stresses under local volume compression. It is shown that this definition may serve as a
theoretical basis for existing empirical relationships between the Vickers microhardness HV

and the various phenomenological, packing density-sensitive parameters of non-crystalline
materials, including among them, the internal pressure, the glass transition temperature
Tg, the excess enthalpy, and the free volume fraction at Tg.
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1. Introduction
Hardness H is an important mechanical property that
may be defined as a measure of the resistance of a mate-
rial to the application of a contact load. A common def-
inition to measure the H is the relationship between the
peak contact load P and the projected area of impres-
sion A [1–3]. This impression, A, is often, of the order of
10–100 squared microns. Hence, the experimental val-
ues of H are commonly referred to as “microhardness.”
It is obvious that a single value of H would be sufficient
to characterize the microhardness of any polycrystalline
material, in so far as A, by far exceeds the characteristic
size of structural heterogeneities involved (microcrys-
tallites). Nevertheless, both, size and relative content of
the latter (e.g., chain-folded and chain extended lamel-
lar crystals in semi-crystalline polymers) proved to be
extremely important structural parameters controlling
the experimental values of H [4–8].

In contrast, large-scale structural heterogeneities are
believed to be absent in non-crystalline (glassy) materi-
als [9, 10]. However, a random distribution of densely-
packed domains of quasi-crystalline order within a
loosely-packed matrix has been accepted as a reason-
able phenomenological schematics of the structure of
glasses [11, 12]. Within this context, any macroscopic
property of a glassy material may be expected to de-
pend on a phenomenological, packing density-sensitive
parameter, such as internal pressure, free volume frac-
tion or other appropriately chosen degree of residual
disorder (with respect to the fully ordered, crystalline
state). The aim of this review is the analysis and dis-

cussion of the correlations between Hand the vari-
ous phenomenological structural parameters for non-
crystalline materials.

2. Microhardness and deformation
micro-mechanics of indentation

2.1. Microhardness as a measure
of resistance to shear stresses
under volume compression

Penetration of a brittle material with a microindenter
(typically, of conical or pyramidal shape with the apex
angle above 120◦) loaded by a force P produces a sur-
face microimpression of area A from which the micro-
hardness H = P/A may be derived [2, 8, 13]. The use
of a diamond pyramid with the apex angle of 136◦ leads
to the Vickers microhardness HV (MPa),

HV = 1854
P

d2
, (2.1)

where the dimensions of force P and of impression
diameter d are [Newton] and [millimeters], respec-
tively.

The stresses under a Vickers pyramid and under a
spherical indenter turn out to be similar. Therefore, the
stress distribution under the former may be described by
Hertz equations derived from treatment of the contact
problem for sphere impression into a flat surface [1, 2].
The complex stress state under a sphere is character-
ized by compression stresses along (and symmetrical
to) the vertical axis, and by stretching stresses near the

0022–2461 C© 2002 Kluwer Academic Publishers 4507



Figure 1 Schematics of the stress distribution along the symmetry axis z
(broken line) for indentation of a solid with Poisson’s coefficient µ = 0.3
by spherical or Vickers indenter (ref. 1).

specimen surface. The maximum pressure at the center
of contact surface is

P0 = 3

2π
· P

r2
, (2.2)

where r is the radius of pressure circle (i.e., contact
surface). The normal stress component σz along the
vertical symmetry axis z is (Fig. 1)

σz = −P0
r2

z2 + r2
.

It is obvious that σz = −P0 at z = 0 (i.e., at the contact
surface), while equal stresses along transversal axes x
and y are

(σx )z = (σy)z = −(1 − µ)P0

(
1 − z

r
arctan

y

z

)

+ P0

2

(
r2

z2 + r2

)
,

where µ is the Poisson’s coefficient. It can be easily
verified that these stresses at z = 0 are described by a
more simple expression,

(σx )z=0 = (σy)z=0 = − P0

2
(1 + 2µ). (2.3)

The special case of µ = 0.5 corresponds to
equal main stress components (i.e., isotropic volume
compression),

(σx )z=0 = (σy)z=0 = −P0, (σz)z=0 = −P0; (2.4)

whereas the more general case of µ ≤ 0.5 corresponds
to

(σx )z=0 = (σy)z=0 < P0

As a result, at the center of compression area the shear
stress is generated,

τxz = σx − σz

2
. (2.5)

The maximum of τxz is reached within the bulk ma-
terial at a distance of z = 0.47 r from the surface, rather
than at the surface itself (Fig. 1). As follows from
Equations 2.2–2.5, at this depth the maximum shear
stresses, approximately, are three times higher than
the maximum shear stress at the contact surface
(τm ≈ 3τz=0), i.e.,

τm ≈ 3
(σx )z=0 − (σz)z=0

2
. (2.6)

Substitution of (σx )z=0 and (σz)z=0 from
Equations 2.3 and 2.4, of P0 from Equation 2.2 and of
r = 0.35d yields, finally [1]:

τm = 2925
P

d2
(1 − 2µ), (2.7)

where the dimensions of P , d and τm are [Newton],
[millimeters] and [MPa], respectively.

As can be inferred from the above analysis of the
stressed state under the Vickers indenter, a local plas-
tic shear deformation should occur in the region of
isotropic compression at a distance of the order of half-
contact radius below the material surface. The deeper
the penetration at P = const, the larger is the contact
area, and the lower are the shear stresses τ . The critical
penetration depth is reached when the normal stress
component σz (and, obviously, the maximum shear
stress τm) matches the yield stress σy of a material,
above which the plastic deformation sets on, i.e.,

τm
∼= σy . (2.8)

Within this context, a more appropriate definition
of the microhardness would probably be a measure of
the resistance to shear deformations under conditions
of isotropic compression, as implied by Equation 2.7,
rather than an average normal pressure HV as defined
by Equation 2.1. For practical reasons, however, the lat-
ter equation is usually preferred, in so far, as it does not
contain an additional material parameter (Poisson’s co-
efficient µ). Nevertheless, in the following discussion
concerning the physical significance of microhardness
the basic Equation 2.7 will be invoked.

By elimination of the ratio P/d2 from Equations 2.1
and 2.7, one obtains

HV = 0.6338

(1 − 2µ)
τm. (2.9)

The latter Equation 2.9 may be used to estimate, say,
τm from known values of HV and µ, and vice-versa.

It is obvious that HV should correlate with τm for
materials with similar values of µ. This is the case of
inorganic optical glasses with µ = 0.22–0.26 (Table I),
for which

HV/τm
∼= 1. (2.10)

In contrast, for linear amorphous polymers with µ =
0.33–0.38 (Table II) this ratio becomes twice as high,
i.e.,

HV/τm
∼= 2. (2.11)

Thus, these two latter equations may be regarded as
an empirical evidence supporting our earlier claim that
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T ABL E I Mechanical properties of inorganic optical glasses (Bokin,
1963; Sanditov, 1969)

E HV τm

Glass (kg mm−2) µ (kg mm−2) (kg mm−2) HV/τm HV/E

K8 7920 0.225 579 503 1.1 0.073
BK10 7516 0.250 553 435 1.3 0.075
BPh12 6107 0.262 461 347 1.3 0.075
TPh3 5469 0.219 424 326 1.1 0.075
Ph2 5473 0.220 412 365 1.1 0.073
Ph4 5466 0.223 412 361 1.1 0.075
TPh1 5355 0.225 392 341 1.1 0.077

T ABL E I I Mechanical properties of linear amorphous polymers

E Pm Wcoh

Polymer (GPa) µ HV/τm (MPa) (MPa)

Polycarbonate 3.7 0.35 2.1 376 384
Poly(methyl methacrylate) 4.0 0.33 1.9 344 348
Polystyrene 4.1 0.37 2.4 389 334
Poly(vinyl chloride) 4.3 0.38 2.6 374 389

microhardness is basically a measure of resistance to
shear deformations under conditions of isotropic com-
pression. From Equation 2.9, a constancy of the ratio
HV/σy is also implied for materials with similar values
of Poisson’s coefficient µ. This is consistent with the
following empirical relationship for glassy polymers
[14]:

HV/σy
∼= const ∼= 1.9 (2.12)

A justification of this empirical relationship is given
in the next section.

2.2. Microhardness and yield stress
In metals, the general relationship between the Vickers
hardness HV and the yield point σy is expressed as
[2, 15],

HV/σy
∼= 3. (2.13)

This relationship was derived theoretically as a solu-
tion of the contact problem for a rigid-plastic body, and
proved experimentally for metals with high Young’s
modulus E and low yield stress σy (i.e., those with
σy/E ≤ 0.001). Such approach is, however, inappli-
cable for non-crystalline materials like organic poly-
mers and inorganic glasses which are characterized by
0.05 < σy/E < 0.1. In this case, the solution of the
elastic–plastic problem for expansion of a spherical
cavity within a solid [15] appears more appropriate.
It is argued [16] that the material under an indenter
should be forced either inwards along the radial direc-
tions (in the spherical cavity regime), or outwards in the
direction of a free surface (in the rigid piston regime),
respectively. In the latter case, the forced-out material
is expected to form bulges around the impression.

Typical profiles for the Vickers impression cross-
sections at room temperature for aluminum (1),
poly(methyl methacrylate) (2) and window silicate
glass (3) are shown in Fig. 2 [17]. As could be expected
from considerations of the sliding field lines under a flat
rigid piston, the impression on the Al is, in fact, sur-
rounded by bulges. In contrast, “buried” impressions

Figure 2 Profiles of Vickers indentations at room temperature for
aluminum at P = 5 g (1), poly(methyl methacrylate) at P = 10 g (2) and
silicate glass at P = 20 g (3) (ref. 17).

without measurable bulges predicted for a spherical de-
formation regime under an indenter [16], are observed
for, both, organic and inorganic glasses.

As follows from the solution of the problem of the
spherical cavity, nucleation and expansion in an infinite
continuum [15], the ratio of the relevant stress H to the
yield point σy is given by

H

σy
= 2

3

[
1 + ln

E

3(1 − 2µ)σy

]
. (2.14)

It turns out that the inequality, HV/σy < H/σy , is a
typical case for polymer glasses, although sometimes
the values of this ratio may be of comparable magni-
tude [16]. It seems obvious that the stresses required to
support the material in bulges around the impression
(which can be represented as a semi-spherical cavity),
are lower than those developed under the spherical cav-
ity case. Hence, HV < H should be expected.

It can be argued that Equation 2.14 may be also appli-
cable for non-crystalline materials, provided the factor
2/3 on the r.h.s. is replaced by an empirical parameter
c < 2/3, i.e.,

HV

σy
= c

[
1 + ln

E

3(1 − 2µ)σy

]
. (2.15)

The available experimental data for organic and
inorganic glasses may be reasonably fitted into
this latter empirical equation assuming c ∼= 0.5 [17].
Equation 2.15 can then be rewritten as

HV

E
∼= 0.5

[
1 − ln

[
3(1 − 2µ)

σy

E

]]
· σy

E
. (2.16)

Thus, the ratio σy/E (hence, the yield point σy) may be
estimated [16, 17] by fits to the theoretical HV/E vs.
σy/E plots for non-crystalline materials with known
values of HV, E and µ (see Fig. 3).

As can be seen from Table III [17], the values of σy for
poly(methyl methacrylate) calculated by Equation 2.16

TABLE I I I Microhardness and yield stress of poly(methyl
methacrylate)

HV E σy σy
a

T (◦C) (kg mm−2 b) (kg mm−2 b) (kg mm−2 b) (kg mm−2 b) HV/σy

25 18.6 375 10.5 11.2 1.8
40 13.2 340 6.8 8.5 1.9
50 11.0 263 5.1 — 2.1
60 9.0 253 3.9 7.0 2.3
80 6.0 172 2.7 5.0 2.2

aExperimental values from uniaxial compression tests (Regel and
Berezhkova, 1959).
b1 kg/mm2 = 9.81 MPa.
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Figure 3 Theoretical relationships between Vickers microhardness HV

and yield stress σy calculated by Equation 2.16 for µ = 0.3 (curve 2), 0.2
(curve 3) and 0.1 (curve 4). The straight line 1 corresponds to HV/σy = 3.

from experimental data for Young’s modulus E and
microhardness HV assuming µ = 0.33, are reasonably
close to the available measured values [16, 18, 19].

The empirical factor c = 0.5 in Equation 2.16 is, in
fact, an approximation of c ∼= 0.47 which can be de-
rived from Equation 2.15 by substitution of typical
experimental averages, σy/E ∼= 0.05, HV/σy

∼= 1.9 and
µ ∼= 0.33 [14, 16, 20]. The σy/E and µ values for dif-
ferent polymers are of the same order of magnitude
(moreover, they enter Equation 2.16 under the loga-
rithm), whereas the linear correlation between HV and
σy as expressed by Equation 2.12, is the result of treat-
ment of relevant experimental data for a large number
of polymers [14]. Thus, Eqaution 2.16 with the statis-
tically reliable value c = 0.5 may be recommended for
estimation of the yield stress σy for glassy polymers. It
is, additionally, noteworthy that substitution of typical
values, σy/E ∼= 0.002 and µ ∼= 0.25, for carbon steels
into Equation 2.16 yields HV/σy

∼= 2.9 which is virtu-
ally identical to Equation 2.13 for metals.

3. Microhardness and structure
of disordered materials

3.1. Internal pressure
As argued in the foregoing, formation of an impression
under the micro-indenter is the result of an irreversible
(plastic) deformation which sets on beyond the yield
point σy . Thus, σy should exceed (or, at least, be equal
to) the energy of interparticle interactions, one measure
of which is the internal pressure Pi [21, 22]. In fact,
the maximum internal pressure Pm (corresponding to
the maximum of interparticle interactions energy) may
be interpreted as the yield stress σy of a material [23].
Thus, one should expect the correlation, HV ∼ σy ∼ Pm.

According to the standard definition [21, 22], the in-
ternal pressure Pi is the isothermal derivative of internal
energy U over volume V ,

Pi =
(

∂U

∂V

)
T

. (3.1)

The internal energy U is made up of interparticle in-
teractions. Therefore, the internal pressure Pi may be

Figure 4 Schematic representation of potential energy U (r ) and of in-
terparticle interactions force f (r ) vs. interparticle distance.

regarded as a measure of elastic resistance of a lattice
to isotropic (compressive or expansive) strains [21, 22].
Under quasi-static, uniaxial extension the elastic stress
Pi is numerically equal to the applied external mechani-
cal stress which is proportional, by definition, to the rel-
ative extension (Hooke’s law), �l/ l0 = �r/r0. Hence,

Pi = E
�r

r0
, (3.2)

where E is the Young’s modulus, �r/r0 is the relative
extension of an interparticle bond, and r0 is the mean
(equilibrium) interparticle distance.

Let us consider the expansion of the potential energy
of binary interparticle interactions u(r ) into a Taylor
series of displacements, x = �r = r − r0, of a particle
with respect to its equilibrium position (Fig. 4). Trun-
cation of the series after the fourth term yields

u ∼= u0 +
(

du

dr

)
r0

· x + 1

2

(
d2u

dr2

)
r0

· x2

+ 1

6

(
d3u

dr3

)
r0

· x3. (3.3)

Taking into account that (du/dr )r=r0 = 0 at the min-
imum of the function u(r ) (Fig. 4), and making the
substitutions

a =
(

d2u

dr2

)
r=r0

, b = −
(

d3u

dr3

)
r=r0

, (3.4)

(where a and b are defined as harmonic and an-
harmonic factors in the above series), one derives from
Equation 3.3:

u ∼= u0 + ax2

2
− bx3

6
. (3.5)

The latter equation may be used to define the force of
interparticle interactions, f = −(du/dx), as

f ∼= −ax + b

2
x2. (3.6)

As can be seen from Fig. 4, the force f = −(du/dr )
passes through maximum at the inflexion point of
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function u(r ). Therefore, the critical extension xm =
(rm − r0) of an interparticle bond corresponding to a
maximum force fm, may be derived from Equation 3.6
using the standard condition, (d f/dx)x = xm = 0, i.e.,
xm = �rm = a/b. Thus, the relative critical strain of an
interparticle bond is given by:

�rm

r0
= a

br0
. (3.7)

The physical implication of Equation 3.7 is straight-
forward. At a given particle displacement exceeding
the critical value xm = �rm the lattice anharmonicity
begins to manifest itself through the relevant anhar-
monicity factor b. As a result, non-linearity of the in-
terparticle force f (x) sets on.

In view of these considerations, a correlation between
the ratio �rm/r0 at the l.h.s. of Equation 3.7 and the
classical measure of anharmonicity of lattice vibrations,
(Grüneisen parameter γ ) should be expected. The clas-
sical Grüneisen equation for the cubic coefficient of
thermal expansion [21, 24],

α = γ
CV

K V
, (3.8)

can be compared with a similar Frenkel equation [25]

α = bkB

2ar2
0 K

, (3.9)

where CV
∼= 3kB is the isochoric heat capacity, V ∼= r3

0
is the volume, K is the bulk modulus, and kB
is the Boltzmann’s constant. Multiplying the latter
Equation 3.9 by 3r0/3r0, one obtains

α =
(

br0

6a

)(
CV

K V

)
, (3.9a)

which is identical to Equation 3.8, provided [26]

γ = br0

6a
. (3.10)

Equation 3.10 can be also derived by means of more rig-
orous procedures [21, 27]. In this formulation, the crit-
ical strain defined by Equation 3.7 turns out to be pro-
portional to the reciprocal Grüneisen parameter [23],

�rm

r0
= 1

6γ
. (3.11)

Let us assume that the equivalent of Hooke’s law
(3.2) applies in the range of non-linear elasticity up to
the limiting bonding strain (3.11). Then, by substituting
the latter equation into the former, one derives [21, 28]:

Pm =
(

1

6γ

)
E . (3.12)

In this representation, the maximum internal pressure
of an equilibrium material Pm (and, by implication, its
microhardness HV) should be higher, the stronger are
the relevant inter-particle interactions (i.e., the higher
the Young’s modulus E and/or the lower the Grüneisen
parameter γ ).

Figure 5 Schematics of temperature dependencies of thermodynamic
properties for a substance in equilibrium crystal and molten states, and
in non-equilibrium glassy states.

3.2. Elastic parameters
It has been tacitly assumed that the validity of
Equation (3.12) is limited to equilibrium solids,
whereas the non-crystalline material (glassy) represents
a non-equilibrium state [12, 29, 30]. As can be inferred
from the schematic diagram in Fig. 5, a glassy material
is structurally similar to an equilibrium liquid by its ex-
cess (with respect to the equilibrium crystal state), “con-
figurational” properties (such as excess volume, excess
enthalpy and/or excess entropy). However, by its inter-
nal mobility the glassy material is similar to an equi-
librium crystal. In terms of continuum mechanics, an
equilibrium (crystalline) material has no stresses in its
reference state [31], whereas the reference states of an
amorphous material are metastable, quasi-equilibrium
states which are, however, internally stressed [32]. On
a macroscale (i.e., at distances above the relevant corre-
lation length ξ ), the internal stresses within a glass are
assumed to have a zero average, whereas on a length
scale below ξ , one should distinguish between stabi-
lizing (negative) stresses in the isolated domains of a
soft, unbuckled material, and destabilizing (positive)
stresses in a rigid continuous matrix which has under-
gone structural buckling [32].

The immediate practical implication is that the weak
(soft) vibration modes of a soft, unbuckled material
within isolated domains of size ξ are those making
a dominant contribution to the Grüneisen constant
in Equation 3.12. In this case, the parameter γ in
Equation 3.12 should be understood as the so called
“lattice Grüneisen constant γL” [33, 34] which is a mea-
sure of vibration anharmonicity of relatively weak inter-
actions (e.g., interchain forces in polymers, and forces
between ions of earth metals and off-bridge oxygen
atoms of ionic sublattices in silicate glasses). To avoid
confusion with the “thermodynamic Grüneisen con-
stant γT ,” it would be desirable to express the constant γ
in Equation 3.12 through other, more easily measurable
material parameters.

Multiplying the basic Equation 3.8 by GkBT/GkBT
and assuming CV

∼= 3kB, one obtains [35]:

γ = (K/3G)[αT (GV/kBT )], (3.13)

where G is the shear modulus. In principle,
Equation 3.13 should also apply for an equilibrium
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liquid, provided G is the instantaneous (i.e., solid-like)
shear modulus. In this case, the product GV is essen-
tially the activation energy for viscous flow Eη, which is
related to the free volume fraction f as Eη/kB T ∼= 1/ f ,
while αT ∼= f ln(1/ f ) [28]. We assume that the same
equations remain valid for a glassy material, the only
difference being that the free volume fraction f is no
longer a function of temperature but is frozen-in at the
glass transition temperature Tg. In other words, fg re-
mains constant in the glassy state below Tg . According
to these considerations, and using the standard formula
of elasticity theory,

K

G
= 2

3

(
1 + µ

1 − 2µ

)

the Equation 3.13 can be rewritten as [23]:

γ = 2 ln(1/ fg)

9

(
1 + µ

1 − 2µ

)
. (3.14)

Thus, the factor 1/A = 9
2 ln(1/ fg) may be regarded as a

phenomenological measure of the contribution of resid-
ual disorder to the vibration anharmonicity of a non-
crystalline material.

Substitution of Equation 3.14 into 3.12 yields

Pm = A

(
1 − 2µ

1 + µ

)
E/6. (3.15)

In view of fairly narrow limits of variation of the fixed
free volume fraction fg (∼=0.015–0.030), for practical
purposes the factor A (∼=0.78–0.93) may be approxi-
mated as unity, i.e.,

Pm
∼= 1 − 2µ

6(1 + µ)
E . (3.16)

Thus, the maximum internal pressure Pm (microhard-
ness HV) of a non-crystalline material becomes a func-
tion of its main elastic parameters which are readily
obtained by experiment.

As can be easily verified (Tables IV–VI), the avail-
able experimental data for many inorganic glasses [28,
36–39] are in reasonable agreement with Equation 3.16.
Moreover, these data are also consistent with the basic
assumption, Pm/HV

∼= 1. The notable exceptions are
the boron anhydride, B2O3 (Table VI), and sodium-
borate glasses containing 5–20 mol% of Na2O. It can
be argued that in the latter case the concentration of
[BO4]− anions changes due to the transformation of
a fraction of boron atoms from triple to quarternary
coordination by oxygen [40]. The negative charges of
[BO4]− anions are compensated by positively charged
Na+ cations within the [BO4]− Na+ complex, the
higher the Na2O contents. As a result, the ratio Pm/HV
increases and levels-off around unity at Na2O contents
above 20 mol%.

3.3. Excess enthalpy
According to current concepts [41], the inelastic
(irreversible) deformation of a non-crystalline material
above the yield point σy starts by the breakdown of a
rigid glassy quasi lattice and is followed up by liquid-
like, co-operative rearrangements of relevant structural
units (“plastic flow” phenomenon). As a typical exam-
ple, after plastic deformation the Poisson’s coefficient
for polycarbonate increases from a solid-like value of
0.35 to a liquid-like value of 0.42 [42]. In this con-
text, a small volume element of a glassy material un-
der the indenter is assumed to be “forced” by a plastic
flow mechanism into the state of a hypothetical melt at
T ′ � Tg. As illustrated in Fig. 5, this is equivalent to an
exothermal transition from the high-energy glassy state
(Hglass) into the low-energy melt state (Hmelt). The heat
liberated during this transition, �H = Hmelt − Hglass,
can be envisioned as a new measure of the strength of
a glassy quasi lattice, alternative to the σy [43].

Thus, assuming σy ∼ �H , one derives from
Equation 2.12

HV
∼= C ′�H ∼= C ′〈�cp〉(T ′ − Tg), (3.17)

where C ′ is a numerical parameter, and 〈�cp〉 =
cp,melt − cp,glass is the mean difference between the spe-
cific heat capacities of a substance in the melt and in
the glassy state, respectively, in the temperature inter-
val between the temperature of measurement T ′ and the
glass transition temperature Tg [44, 45].

The linear increase of HV with Tg, as predicted
in Equation 3.17 by the condition, C ′〈�cp〉 ∼= const,
is consistent with the available experimental data for
silicate glasses (Fig. 6) and for several series of glassy
polymers (Fig. 7) [43, 46]. The apparent constancy of
the product C ′〈�cp〉 implies either the constancy of
each of both terms, or the inverse proportionality be-
tween them. However, the observed scatter of experi-
mental data on the typical HV vs. Tg plot (Fig. 7) sug-
gests that, at least, one of the above assumptions may
not be strictly valid.

In principle, an additional source of the scattering of
data may be the dependence of Tg on the mechanical

Figure 6 Relationship between Vickers microhardness and glass transi-
tion temperature for inorganic glasses (ref. 1991).
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T ABL E IV Mechanical properties of silicate glasses (Sanditov and Sangadiev, 1998)

Glass µ E (kg mm−2) HV (kg mm−2) Pm (kg mm−2) Pm/HV

SiO2 0.017 7450 693 700 1.01
K2O–SiO2:
K2O (mol%)

12.1 0.230 5412 406 396 0.98
15.8 0.225 5323 374 398 1.06
19.6 0.250 4848 364 330 0.91
26.4 0.270 4821 337 291 0.86
K 8 0.225 7920 579 593 1.02
TK 6 0.277 7913 600 461 0.77
BK 6 0.212 7640 500 605 1.21
BK 10 0.250 7516 553 501 0.91
BPh 12 0.262 6107 461 384 0.83
TPh 3 0.219 5469 424 420 0.99
Ph 2 0.220 5473 412 419 1.02
Ph 4 0.223 5466 412 413 1.00
TPh 1 0.225 5355 392 401 1.02
TPh 4 0.257 5980 400 385 0.96

20SiO2 · 80PbO (wt%) 0.255 5030 290 327 1.13
12Na2O · 18RO · 70SiO2

BeO 0.158 7890 600 777 1.30
CaO 0.218 7930 530 612 1.15
SrO 0.232 7650 530 555 1.05
BaO 0.252 7510 510 496 0.97
ZnO 0.222 6700 510 508 1.00
CdO 0.247 6810 510 461 0.90
PbO 0.217 5450 450 422 0.94

Na2O · xRO · 5SiO2

CaO 0.5 0.226 7350 492 548 1.11
1.0 0.246 7300 521 496 0.95
1.5 0.255 7700 558 501 0.90
2.0 0.258 8000 583 513 0.88
2.5 0.261 8050 600 509 0.85
3.0 0.266 8800 633 542 0.86

ZnO 0.5 0.233 6900 480 498 1.04
1.0 0.255 6950 508 452 0.89
1.5 0.269 7200 537 437 0.81
2.0 0.269 7250 542 440 0.81
2.5 0.285 7400 546 413 0.76
3.0 0.286 7900 566 438 0.77

SrO 0.5 0.238 7000 483 494 1.02
1.0 0.259 7100 517 463 0.88
1.5 0.263 7300 546 457 0.84
2.0 0.274 7450 560 441 0.79
2.5 0.282 7700 575 436 0.76
3.0 0.280 8150 591 467 0.79

CdO 0.5 0.236 6505 475 463 0.97
1.0 0.255 6495 500 423 0.85
1.5 0.267 6500 517 398 0.77
2.0 0.272 7050 525 421 0.80
2.5 0.281 7050 533 402 0.75
3.0 0.308 7100 542 347 0.64

BaO 0.5 0.239 6500 466 456 0.98
1.0 0.258 6850 491 439 0.89
1.5 0.270 6900 500 417 0.83
2.0 0.281 6900 508 393 0.77
2.5 0.285 6950 517 388 0.75
3.0 0.286 6970 525 387 0.74

PbO 0.5 0.225 6030 433 451 1.04
1.0 0.237 5650 442 400 0.90
1.5 0.242 5700 417 395 0.95
2.0 0.240 5600 417 391 0.94
2.5 0.248 5300 392 357 0.91
3.0 0.254 5020 350 328 0.94

and/or thermal history of a studied sample. As can be
inferred from the schematic diagram in Fig. 5, the Tg
value (hence, the excess enthalpy �H at T ′) for a given
sample will be higher (T ′′

g > T ′
g), the higher the cool-

ing rate of an equilibrium melt at the same pressure, or
the higher the densification pressure at the same cool-
ing rate. This effect, however, proves to be of minor
importance [43].
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T ABL E V Mechanical properties of sulphate–phosphate glasses (Sanditov et al., 1993)

Pm (kg mm−2)

Glass E (kg mm−2) µ fg A HV (kg mm−2) (3.19) (3.16) Pm/HV

NaPO3 3610 0.294 0.016 1.08 175 195 194 1.11
0.9NaPO3 · 0.1ZnSO4 4060 0.288 0.018 1.12 210 231 223 1.06
0.8NaPO3 · 0.2ZnSO4 4220 0.284 0.019 1.13 225 248 237 1.05
0.7NaPO3 · 0.3ZnSO4 4530 0.273 0.020 1.15 235 260 269 1.14
0.6NaPO3 · 0.4ZnSO4 5210 0.259 0.020 1.15 260 286 332 1.28
0.9NaPO3 · 0.1Li2SO4 4140 0.300 0.014 1.05 200 206 212 1.06
0.8NaPO3 · 0.2Li2SO4 4210 0.303 0.013 1.04 200 205 212 1.06
0.7NaPO3 · 0.3Li2SO4 4230 0.304 0.014 1.05 215 212 212 0.99
0.9NaPO3 · 0.1Na2SO4 3730 0.299 0.016 1.08 195 207 192 0.98
0.8NaPO3 · 0.2Na2SO4 3550 0.292 0.016 1.08 190 191 190 1.00
0.7NaPO3 · 0.3Na2SO4 3540 0.288 0.015 1.07 180 172 194 1.08
0.9NaPO3 · 0.1K2SO4 3380 0.316 0.013 1.04 210 175 157 0.75
0.8NaPO3 · 0.2K2SO4 3350 0.316 0.014 1.05 205 185 156 0.76
0.7NaPO3 · 0.3K2SO4 3340 0.313 0.014 1.05 200 180 158 0.79
0.4K2SO4 · 0.6ZnSO4 2790 0.320 0.011 1.00 115 132 127 1.10

T ABL E VI Mechanical properties of PbO–B2O3 and Bi2O3–B2O3

glasses (Sanditov and Sangadiev, 1998)

E HV Pm

Glass µ (10−10 Pa) (kg mm−2) (kg mm−2) Pm/HV

PbO–B2O3

PbO (mol%)
0 0.262 1.728 194 111 0.57
25 0.268 5.593 385 348 0.90
30 0.276 5.934 389 354 0.91
35 0.275 6.230 412 373 0.91
40 0.276 6.409 414 383 0.93
42 0.275 6.347 412 380 0.92
44 0.276 6.470 392 385 0.98
45 0.276 6.141 395 366 0.93
46 0.278 6.235 385 369 0.96
48 0.276 6.132 384 366 0.95
50 0.278 6.033 382 357 0.93
55 0.283 5.418 331 312 0.94
60 0.285 4.954 302 281 0.93
65 0.285 4.431 272 252 0.93
70 0.287 4.101 247 231 0.94

Bi2O3–B2O3

Bi2O3 (mol%)
25.6 0.284 7.330 498 419 0.84
33.2 0.273 7.725 495 468 0.95
42.0 0.273 7.190 472 436 0.92
50.2 0.290 6.568 438 363 0.83
56.8 0.287 5.932 418 334 0.80

Figure 7 Relationship between Vickers microhardness and glass transi-
tion temperature for three series (circles, triangles and squares, respec-
tively) of interpenetrating polymer networks (refs. 43 and 46).

3.4. Free volume fraction
As argued above, a glass may be defined as an ex-
panded (with respect to an equilibrium crystal), in-
ternally stressed material with a liquid-like structural
disorder frozen-in at Tg (Fig. 5). One of the experimen-
tal manifestations of the arrest of external (configura-
tional) degrees of freedom on cooling an equilibrium
liquid through and below Tg, is a sudden drop of the
maximum internal pressure [47]. Therefore, the inter-
nal pressure P ′

m of a non-equilibrium, metastable glass
at T ′ � Tg becomes significantly smaller than that (Pm)
for a hypothetical equilibrium melt (Fig. 8).

In the free volume (hole) formulation [48], for an
equilibrium liquid the hole formation probability will
be the hole fraction,

f = Nh/N ∼= exp(−X ), (3.18)

while the maximum internal pressure Pm is simply the
ratio of hole energy to the hole volume,

Pm = εh

vh
. (3.19)

(here Nh is the number of holes, N is the total number
of lattice sites, X = (εh + vh P)/kBT , εh and vh are the

Figure 8 Schematics of temperature dependence of internal pressure of
a substance in the equilibrium melt state, and in non-equilibrium glassy
states.
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Figure 9 Relationship between yield stress and glass transition temper-
ature for polymers (ref. 49).

hole formation energy and hole volume, respectively).
The internal pressure of a liquid at Tg may be calculated
by Equation 3.19 with the hole energy in the numerator
derived from Equation 3.18 as

εh = kBTg ln(1/ fg), (3.20)

while the deficit of the internal pressure of a glass, P ′
m,

may be accounted for as [49]

P ′
m = Pm(1 − A). (3.21)

Assuming σy
∼= P ′

m, one may write, finally [49]

σy =
(

C2kB

vh

)
Tg, (3.22)

where

C2 = ln

(
1

fg

)[
1 − 2

9
ln

(
1

fg

)]
∼= const ≈ 0.66.

The linear dependence of σy on Tg predicted by
Equation 3.22 for substances with similar values of vh
is, in fact, consistent with the available experimental
data for organic polymers (Fig. 9). From the plots of
Figs 6 and 7, this result may be regarded as an additional
evidence for the assumed proportionality between HV
and σy (see above).

4. Conclusions
As follows from analysis of the stressed state under
the Vickers indenter, a local plastic shear deforma-
tion should occur in the region of isotropic compres-
sion when the maximum shear stress τm matches the
yield stress σy of a material. Within this context, the
Vickers microhardness HV ≈ τm ≈ σy may be defined
as a phenomenological measure of the resistance to
shear deformations under conditions of isotropic com-
pression. This definition can serve as a theoretical basis
for existing empirical relationships between HV and the
various phenomenological, packing density-sensitive
parameters of non-crystalline materials. For example,

the maximum internal pressure of an equilibrium mate-
rial Pm (and, by implication, its microhardness HV) is
shown to be higher, the stronger are the relevant inter-
particle interactions (i.e., the higher the Young’s mod-
ulus E and/or the lower the Grüneisen parameter γ ).
Moreover, assuming that a small volume element of
a glassy material under the indenter is “forced” by a
plastic flow mechanism into the state of a hypothetical
melt below its glass transition temperature Tg, linear
correlations between HV and Tg are obtained. Thus,
measurements of microhardness are believed to offer
useful complementary insights into structure-property
relationships for non-crystalline solids.
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8. F . J . B A L T Á C A L L E J A and S . F A K I R O V , “Microhardness

of Polymers” (Cambridge University Press, Cambridge, 2000).
9. R . H O S E M A N N and S . N . B A G C H I , “Direct Analysis of

Diffraction by Matter” (North Holland, Amsterdam, 1962).
10. D . R . U H L M A N N , Faraday Disc. Chem. Soc. 68 (1979) 87.
11. R . N . H A W A R D (ed.), “The Physics of Glassy Polymers” (Ap-

plied Science Publ. Ltd., London, 1973).
12. R . Z A L L E N , “The Physics of Amorphous Solids” (John Wiley

and Sons, New York, 1983).
13. H . O’N E I L L , “Hardness Measurement of Metals and Alloys”

(Chapman and Hall, London, 1967).
14. A . B . S I N A N I and V. A. S T E P A N O V , in: “Hardness Re-

search” (USSR Institute of Metrology. Izd. Standartov, Moscow,
1967) p. 180 (in Russian).

15. R . H I L L , “Mathematical Theory of Plasticity” (Clarendon Press,
London, 1950).

16. S . B . A I N B I N D E R and M. G. L A K A , Mekh. Polim. 1 (1968)
90.

17. D . S . S A N D I T O V , Izv. VUZ’ov : Fizika 10 (1969) 111.
18. Y U. S . L A Z U R K I N and R. L . F O G E L S O N , Zhurn. Tekh. Fiz.

21 (1954) 267.
19. V . R . R E G E L and G. V. B E R E Z H K O V A , in: “Selected Prob-

lems of the Strength of Solids” (Izdat. Akad. Nauk USSR, Moscow,
1959) p. 375 (in Russian).

20. A . D . K U R I T S Y N A and P . G . M E I N S T E R , Zav. Lab. 28
(1962) 491.

21. A . I . B U R S H T E I N , “Molecular Physics” (Nauka, Novosibirsk,
1986) (in Russian).

22. C . A . C R O X T O N , “Liquid State Physics” (Cambridge University
Press, Cambridge, 1974).

23. G . V . K O Z L O V and D. S . S A N D I T O V , “Anharmonic Ef-
fects and Physical–Mechanical Properties of Polymers” (Nauka,
Novosibirsk, 1994) (in Russian).

24. C . K I T T E L , “Introduction to Solid State Physics” (John Wiley and
Sons, New York, 1956).

4515



25. J . F R E N K E L , “Introduction to the Theory of Metals” (OGIZ,
Leningrad, 1948) (in Russian).

26. D . S . S A N D I T O V and V. V. M A N T A T O V , Fiz. Khim Stekla
9 (1983) 287.

27. G . L E I B F R I E D , “Microscopic Theory of Mechanical and Ther-
mal Properties of Crystals” (John Wiley and Sons, New York, 1956).

28. D . S . S A N D I T O V and G. M. B A R T E N E V , “Physical Prop-
erties of Disordered Structures” (Nauka, Novosibirsk, 1982) (in
Russian).

29. P . P . K O B E K O , “Amorphous Substances” (USSR Acad. Sci.
Publ., Leningrad, 1952) (in Russian).

30. J . D . M A C K E N Z I E (ed.), “Modern Aspects of the Vitreous State”
(3 Volumes) (Butterworths, London, 1960–1964).

31. M. B O R N and H. H U A N G , “Dynamical Theory of Crystal Lat-
tices” (Oxford University Press, Oxford, 1954).

32. S . A L E X A N D E R , Phys. Rep. 296 (1998) 65.
33. Y . W A D A , A. I T A N I , T . N I S H I and S . N A G A I , J. Polymer

Sci. A 2-7 (1969) 201.
34. R . W. W A R F I E L D , Makromol. Chem. 175 (1974) 3285.
35. D . S . S A N D I T O V and V. V. M A N T A T O V , Fiz. Khim Stekla

17 (1991) 174.
36. P . Y A. B O K I N , Optiko-Mekh. Prom. 11 (1963) 27.
37. O . V . M A Z U R I N , M. V. S T R E L T S Y N A and T. P .

S H V A I K O-S H V A I K O V S K A Y A , “Properties of Glasses and
Glass-Forming Melts” (6 Volumes) (Nauka, Moscow, 1973–1997)
(in Russian).

38. D . S . S A N D I T O V , V. L . M A M O S H I N and V. G.
A R K H I P O V , Fiz. Khim. Stekla 19 (1993) 593.

39. D . S . S A N D I T O V and S . S H. S A N G A D I E V , ibid. 24 (1998)
741.

40. S . V . N E M I L O V , ibid. 23 (1997) 3.
41. Z . H . S T A C H U R S K I , Prog. Polym. Sci. 22 (1997) 407.
42. J . S K O L N I K , D . P E R C H A K , R . Y A R I S and J . S C H A E F E R ,

Macromolecules 17 (1984) 2332.
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